AI Reimagined: Analytics Intelligence – A Prerequisite for Artificial Intelligence

When people hear AI, they often think of artificial intelligence—a powerful technology transforming industries. But at Kubit, we view AI differently. For us, it stands for Analytics Intelligence, an approach that prioritizes data transparency over the complexities artificial intelligence can create when applied to misunderstood data.

Artificial Intelligence and Misunderstood Data: Adding to the Confusion

While artificial intelligence has immense potential, applying it to poorly understood or siloed data often worsens confusion. It’s similar to automating a flawed process—you’re simply accelerating the problem. When AI is layered on top of this kind of data, the results are typically conflicting insights, incomplete answers, and poor decision-making.

A 2023 report by Forrester found that 60% of decision-makers struggle to trust the data output from AI-driven systems. This is largely due to black-box AI systems, which offer no visibility into how data is processed. Business leaders are often left in the dark about how insights are generated, which breaks down trust and leads to inefficiencies. Moreover, relying on AI to run complex queries without understanding the data sources can be extremely expensive. 

The solution? Embrace Analytics Intelligence and lean into data transparency.

Kubit’s Approach to Transparency: Analytics Intelligence in Action

At Kubit, we believe in empowering businesses with full visibility into their data, enabling them to understand and trust the information driving their decisions. Here’s how we make that happen:

1. Open Data Sources and Streamlined Systems

Traditional product analytics solutions, like Amplitude, operate within a black box, leaving users in the dark about how insights are generated. Kubit takes the opposite approach: we open up data sources so users can see exactly where their data comes from and how it’s processed. This transparency eliminates confusion and reduces errors caused by disconnected or misaligned systems.

2. SQL Visibility After Reports Are Built

A common frustration with AI-driven data solutions is the inability to understand how reports are created. At Kubit, we provide full SQL visibility after reports are built. Users can see the exact queries behind every report, giving them full transparency into the logic and calculations used.

This level of insight helps users:

 

    • Identify errors or inconsistencies in reports

    • Troubleshoot issues when data seems off

    • Refine reports and queries as needed, without guesswork

SQL Visibility After Reports Are Built

3. Self-Service Access to Data

Traditional AI systems often centralize data access, making business users reliant on data teams to pull reports or run queries. Kubit changes this dynamic by offering a self-service model, allowing users to access data independently, without needing a data team to mediate.

Benefits of self-service data include:

 

    • Faster decision-making

    • Less dependency on technical teams

    • Increased agility across departments

4. Removing Data Silos by Keeping All Data in the Warehouse

Data silos—isolated pockets of information stored in different systems—can cause discrepancies and confusion. Many AI systems only layer additional complexity on top of this fragmented data. Kubit solves this problem by keeping all data in the data warehouse, ensuring everyone operates from a single source of truth. This eliminates silos and allows teams to collaborate using consistent, reliable data.

Removing Data Silos by Keeping All Data in the Warehouse

A Future Built on Analytics Intelligence

As businesses grapple with increasing data complexity, relying solely on AI-driven black-box solutions can be risky. The better approach is Analytics Intelligence, which emphasizes transparency and accessibility.

Kubit’s focus on open data sources, SQL visibility, and self-service data access empowers companies to make smarter decisions, faster—without the confusion and inefficiencies artificial intelligence can sometimes create. By keeping all data in the warehouse, we ensure there are no silos, only clear, actionable insights that drive business success.

Discover Kubit

Activate your warehouse data with complete analytics.

A Focused Approach: Why Being Best-in-Class Beats All-in-One

With recent shifts in the product analytics landscape, Kubit stands apart as the only warehouse-native solution that remains independent of any specific use case or integration partner. While some competitors are being acquired by larger platforms and shifting their focus to MarTech, Kubit continues to focus on delivering clear, accurate data insights directly from the customer’s cloud data warehouse. Instead of getting distracted by expanding into other fields, Kubit stays committed to its core mission: providing data transparency and control to help businesses democratize analytics and make smarter, faster decisions.

Why Focusing on a Data Visibility Solution Matters

The traditional method of moving data into third-party data silos and analytics tools (via ETL processes or SDK) has several drawbacks, and Kubit’s focused approach directly addresses these issues:

 

    • Scaling and resource constraints: As data requests increase, traditional platforms struggle to scale efficiently, often leaving teams waiting for insights.

    • Errors and confidence: Moving data to third-party tools introduces risks of inaccuracies, diminishing trust in the analytics provided.

    • Inefficiencies: Teams often waste time fixing issues introduced by complex integration processes.

    • Security concerns: Transferring sensitive data to external systems adds potential security vulnerabilities.

Kubit solves these problems by keeping everything within the customer’s chosen data warehouse. Our platform integrates directly with the source, avoiding the need to move data into multiple systems. This focus on data visibility, without unnecessary complexity, ensures that our users can trust their data—every time.

Speed and Agility

Large, one-size-fits-all platforms often suffer from long development cycles due to their complex roadmaps, which try to satisfy various customer needs across different industries. At Kubit, our focus allows us to be agile and responsive to customer requests. Rather than waiting years for features that are deprioritized in favor of more generalized tools, Kubit delivers quick, impactful updates that directly address the challenges facing data organizations today.

 

    • Faster implementation: Our platform has seamless No-Code integration, allowing customers to gain insights within 10 days.

    • Continuous innovation: We rapidly introduce new features weekly based on customer feedback, maintaining a competitive edge.

Staying Warehouse Independent

One of Kubit’s greatest strengths is our warehouse independence. While we partner with all major data platforms like Snowflake, BigQuery, Databricks, Redshift and ClickHouse, we remain agnostic, ensuring customers are not locked into any single ecosystem. This flexibility allows data teams to use the infrastructure that best suits their needs, without sacrificing performance or control.

Kubit Partner Data Warehouse Graphic

By remaining warehouse-independent, Kubit enables customers to keep control of their data infrastructure while maximizing the value of their analytics.

Why Best-in-Class Beats All-in-One

All-in-one platforms often promise the world, but their focus is spread too thin. The favoritism of one specific set of data over another completely misses the point of data insights from a central warehouse. This skew in focus results in bloated systems full of features that most users don’t need. In contrast, Kubit’s best-in-class approach is laser-focused on solving real problems for data teams. Whether it’s providing product analytics, executive dashboards, or improving decision-making through data democratization, our mission is clear. Kubit is focused on being the best at what we do, providing superior data visibility and analytics solutions to every team throughout an organization.

Conclusion: Simplicity Drives Success

As the data analytics industry continues to evolve, it’s clear that simplicity and specialization are the keys to success. Kubit’s warehouse-native approach empowers data teams to maintain control of their data without the overhead or complexity of large, all-in-one platforms. By staying focused on data transparency and flexibility, Kubit delivers faster, more reliable insights, helping businesses make better decisions.

Recent events only validate our approach, and we’re excited to continue leading the charge in warehouse-native analytics, putting data visibility and customer needs at the forefront.

ClickHouse Architecture: A Kubit Companion Guide

ClickHouse and Kubit are a match made in data heaven. Together, they form a powerful combination that enables fast, efficient, and scalable analytics for modern businesses. In this guide, we’ll explore how ClickHouse’s architecture works seamlessly with Kubit’s customer analytics platform, enabling you to leverage the full potential of your data.

ClickHouse Architecture Overview

ClickHouse is a columnar database management system (DBMS) designed for online analytical processing (OLAP). Its architecture is optimized for handling large-scale data queries, making it ideal for big-data applications.

Some key features of ClickHouse’s database architecture include:

  • Columnar data storage for faster query processing
  • Parallel execution for scalability and speed
  • Compression techniques that reduce storage costs

These features ensure that Kubit’s analytics platform performs at top speed, handling complex queries with ease.

ClickHouse Architecture Overview Graphic

How to Optimize Your ClickHouse Queries

To get the best performance from ClickHouse, especially when integrated with Kubit, it’s crucial to understand ClickHouse internals. This deep understanding allows you to optimize query performance by focusing on:

  • Using partitioning to break down large datasets for faster query response.
  • Optimizing index usage to narrow down the search space for queries.
  • Batch inserting data to avoid frequent minor updates that may slow down performance.

At Kubit, we leverage these techniques to ensure your data queries are fast and cost-efficient.

Benefits of ClickHouse’s Architecture

The architecture of ClickHouse makes it an ideal solution for businesses that require high-performance product analytics, such as those powered by Kubit. Its scalability allows it to handle millions of rows of data without compromising performance, ensuring seamless operations even at large data volumes. The system’s efficiency shines through with parallel query processing, delivering near-instant results for complex data sets. Additionally, the columnar storage format offers flexibility, giving businesses greater control over how their data is queried and analyzed to gain actionable insights.

Benefits of ClickHouse’s Architecture Graphic

These features help large-scale organizations democratize data, making it accessible to more teams across the business. 

ClickHouse Use Cases

ClickHouse is the go-to solution for organizations that handle data from millions of users, particularly in consumer applications and high-volume SaaS products. Its performance is crucial for industries such as e-commerce and media, where businesses rely on real-time data to track customer behavior, and when capturing content performance and audience engagement is critical to driving user retention and growth. 

SaaS companies use it to monitor product usage and engagement metrics at scale. Kubit leverages this power for both product and customer analytics, delivering fast, actionable insights that can be easily visualized in executive dashboards. This makes it the ideal platform for businesses looking to turn massive data streams into clear, strategic decision-making tools.

How to Get Started with ClickHouse

To begin utilizing ClickHouse with Kubit, simply integrate ClickHouse as your backend database for analytics. Kubit’s platform is designed to integrate with ClickHouse, allowing you to seamlessly:

  • Connect your data sources quickly
  • Access fast, real-time analytics
  • Optimize query performance for large datasets

With Kubit’s streamlined setup and expert customer success team, you’ll unlock ClickHouse’s full potential, effortlessly optimizing performance and scalability. Complex datasets become actionable, giving teams across your organization visibility into critical insights. This visibility allows for data-driven decisions and business improvements, empowering more of your team to operate effectively and align on strategic goals.

FAQs

What is ClickHouse?

ClickHouse is a columnar DBMS designed for fast query processing of large datasets in OLAP scenarios.

Which engine does ClickHouse use?

ClickHouse uses a MergeTree engine, allowing partitioning, indexing, and replication.

What language does ClickHouse use?

ClickHouse uses SQL as its query language, making it accessible to most data engineers.

What is a DBMS?

A DBMS (Database Management System) is software used to store, retrieve, and manage data.

9 Amplitude Alternatives by Use Case

Ready to move on from Amplitude, or want to explore other options? Read this blog post to get a better understanding of vendors that offer similar solutions to Amplitude, their target use cases, key features, and customer ratings. 

#CompanyG2 scoreDescription
1Kubit4.6Warehouse-native product analytics for optimizing digital products while ensuring data security, compliance, and scalability
2Mixpanel4.6Product analytics for understanding customer behavior across devices to improve user experience
3Heap4.4Digital insights for improving the customer journey and testing new features and experiences
4Pendo4.4Product experience platform that helps teams deliver better software experiences and increase product adoption 
5Netspring4.3Analytics for insight on digital product usage, customer journey, and business intelligence

What is Amplitude?

Amplitude is a product analytics platform that helps businesses build better digital products by tracking and understanding user behavior. Amplitude analytics help teams answer questions about what happened and why. These insights enable informed decision-making to drive growth.

Businesses use Amplitude to:

  • Analyze active users
  • Understand customer value
  • Accelerate monetization
  • Increase user engagement and retention 
  • Improve the customer journey
  • Maximize user adoption 

Drawbacks to using Amplitude

Choosing the right analytics platform for your use case is critical for success. Many analytics vendors are on the market, and each has its own strengths (and drawbacks), depending on the use case it’s implemented for. Some drawbacks to using Amplitude include:

It’s not warehouse-native. With Amplitude, you must move or replicate your data for analysis, so your data will not represent a 100% complete, up-to-date picture.

Higher cost of ownership. Amplitude requires additional engineering resources to transform data into a certain format, include historical data, expunge data, or add new schemas to it.

Limited permissions. While other product analytics vendors offer custom, role-based permissions, Amplitude offers only four out-of-the-box roles.

Data security. With Amplitude, your data must leave the walls of your CDW to be analyzed, potentially causing security or compliance risks. 

Data analysis. Amplitude offers common analysis types but does not include capabilities such as and/or with filters, creating filters on the fly, out-of-the-box sampling, access to SQL behind each query, or creating histograms on the fly.  

Top 9 alternatives to Amplitude, by use case

#1 Kubit

Use case: Warehouse-native analytics for optimizing digital products while ensuring data security, compliance, and scalability.

Kubit analytics platform helps companies gain valuable customer insights without moving their data into silos. This warehouse-native approach lowers the cost of ownership, frees up engineering resources, and delivers more accurate and complete self-service insights.

Key features:

  • User engagement: Find out which user behaviors lead to higher lifetime value and how to retain and grow your user base.
  • Feature engagement: See which product bets drive the highest engagement and create power users within your product.
  • Conversion analysis: Learn how users convert through critical funnels within your product and how to resolve areas that lead to drop off.
  • Consumption patterns: Understand which product bets and content to play up and which to sunset.

G2 gives Kubit 4.6/5 stars. Read reviews of Kubit on G2.

#2 Mixpanel

Use case: Analytics for learning how and why people engage, convert, and retain (across devices) to improve their user experience.

Mixpanel is a digital analytics platform that helps companies measure what matters, make decisions fast, and build better products through data with self-serve product analytics solutions.

Key features: 

  • Product analytics: Track user behavior, KPIs, and core metrics with trends, retention, and flows.
  • Collaborative boards: Build analysis in collaborative boards that can include reports, text, videos, and GIFs.
  • Alerts: Get automated notifications when there are anomalies in metrics or when they fall outside of an expected range.
  • Filtered data views: Hide and filter data on a per-team basis to protect data privacy and reduce noise.

G2 gives Mixpanel 4.6/5 stars. Read reviews of Mixpanel on G2.

#3 Heap

Use case: Analytics for improving the customer journey and testing new features and experiences.

Heap is a digital insights platform that helps companies understand their customers’ digital journeys so they can quickly improve conversion, retention, and customer delight.

Key features:

  • Session replay: Get insights about user behavior by replaying their session to understand where they experience friction.
  • Heatmaps: A visualization of a user’s behavior on the page, including what they click on, how far they scroll, and where they focus their cursor.
  • Autocapture: Capture all the data you need automatically, including every view, click, swipe, and form fill, for web and mobile.
  • Segments: Create user cohorts based on real actions taken on your site or app to understand how different users navigate your digital experience.

G2 gives Heap 4.4/5 stars. Read reviews of Heap on G2.

#4 Pendo

Use case: Product analytics, in-app guides, session replay, and user feedback.

Pendo is a product experience platform that helps teams deliver better software experiences and increase product adoption through onboarding users, tracking adoption analytics, monitoring usage patterns, and measuring churn rates.

Key features:

  • Product analytics: Collect app and user data and learn from the past to make informed decisions that improve product adoption.
  • Session replay: Watch video playbacks of user sessions to understand why users do what they do.
  • In-app guides: Deliver personalized guidance to customers directly inside your app.
  • Product-led growth: Drive better customer retention, conversions, and engagement with less time and expertise.

G2 gives Pendo 4.4/5 stars. Read reviews of Pendo on G2.

#5 Userpilot

Use case: Analytics for increasing product adoption, improving onboarding, and supporting product-led growth.

Userpilot is an all-in-one platform for Product & UX teams. It combines product analytics, in-app engagement, and in-app surveys to help you increase product adoption through powerful in-app experiences, actionable product analytics, and user feedback. 

Key features:

  • Feature tags and heatmaps: Tag certain UI elements and monitor how users interact with them; visualize data through color-coded heatmaps.
  • Custom event tracking: Track relevant milestones in a customer journey that reflect desirable user behavior, like downloading a Chrome extension, and then monitor how many users behave in that manner.
  • Analytics dashboards: Track product usage metrics such as the number of active users, sessions, average session duration, and feature adoption rate from a single view.
  • Funnel analysis: Track how users progress through different user funnels, enabling you to discover friction points in the user journey and optimize them to improve the user experience.

G2 gives Userpilot 4.6/5 stars. Read reviews of Userpilot on G2.

#6 Smartlook

Use case: Analytics for websites, iOS/Android apps, and various frameworks that answer the “why” behind user actions.

Smartlook gathers brands’ app data together on one central dashboard to provide clear, data-driven decision-making for product managers, marketers, UX designers, and developers to reduce churn rates, boost conversions, identify and fix bugs, and improve UX.

Key features:

  • Session recordings: Evaluating user recordings can reveal issues with your app or website.
  • Events: Find out how often users perform certain actions that are important to you.
  • Funnels: Find out where and why your users are dropping off, so you can improve. 
  • Heatmaps: Get an overview of where your users click and how far they scroll.

G2 gives Smartlook 4.6/5.0 stars. Read reviews of Smartlook on G2.

#7 Google Analytics

Use case: Freemium analytics service for gaining insight into website and app behavior, user experience, and marketing efforts.

Google Analytics collects website and app visitor data to help businesses determine top sources of user traffic, gauge the success of their marketing campaigns, track goal completion, discover patterns and trends in user engagement, and obtain visitor demographics.

Key features:

  • Built-in automation: Get fast answers to questions about your Google Analytics data, predict user behavior, and tap into powerful modeling capabilities.
  • Reporting: Dive deeper into the ways customers interact with your sites and apps with real-time reporting, acquisition reports, engagement reports, and monetization reports.
  • Advertising workspace: Understand the ROI of your media spend across all channels to make informed decisions about budget allocation and evaluate attribution models.
  • Explorations: Run deeper, custom analysis of your data without the limitations of pre-defined reports, and share insights with other users.

G2 gives Google Analytics 4.5/5 stars. Read reviews of Google Analytics on G2.

#8 Netspring

Use case: Analytics for insight on digital product usage, customer journey, and business intelligence.

Netspring is a product and customer analytics platform that brings the modeling flexibility and exploratory power of business intelligence to self-service product analytics, working directly off of any cloud data warehouse.

Key features:

  • Self-service: Self-serve answers questions from a rich library of product analytics reports, with the ability to pivot back and forth between any report and ad hoc visual data exploration.
  • Warehouse-native: Combine product instrumentation with any business data in your data warehouse for context-rich analysis.
  • SQL option: Avoid writing and maintaining complex SQL for funnel/path-type queries, but have the option of leveraging SQL for specialized analysis.
  • Product and customer analytics: Solutions for behavioral analytics, marketing analytics, operational analytics, customer 360, product 360, and SaaS PLG.

G2 gives Netspring 4.3/5 stars. Read reviews of Netspring on G2.

#9 Posthog

Use case: Combining product analytics, session replay, feature flags, A/B testing, and user surveys into an all-in-one, open-source platform.

Posthog enables software teams to capture events, perform analytics, record user sessions, conduct experiments, and deploy new features, all in one platform, helping engineers to design better, build better, develop better, and scale better.

Key features:

  • Product analytics: Funnels, user paths, retention analysis, custom trends, and dynamic user cohorts. Also supports SQL insights for power users.
  • A/B tests: Up to nine test variations, as well as primary and secondary metrics, can be used. Test duration, sample size, and statistical significance can be automatically calculated.
  • Session replays: Includes timelines, console logs, network activity, and 90-day data retention.
  • Surveys: Target surveys by event or person properties. Templates for net promoter score, product-market fit surveys, and more.

G2 gives Posthog 4.4/5 stars. Read reviews of Posthog on G2.

Is Kubit right for you?

Customers typically choose Kubit product analytics over Amplitude for four reasons: 

  • Warehouse-native architecture
  • Lower total cost of ownership
  • Data security and compliance
  • Expansive analysis capabilities


If you’re ready to empower your teams with warehouse-native, self-service product analytics, without having to move your data, contact us.

Unleashing the Power of Self-Service Analytics with Snowflake-native Kubit

Kubit offers the market-leading self-service analytics platform that runs natively on Snowflake.

In today’s data-centric world, the ability to sift through large amounts of information and extract actionable insights quickly is not just an advantage—it’s a necessity. With IDC predicting that global data volume will surpass 160 zettabytes by 2025, a tenfold increase from 2017, having the ability to quickly access, analyze, and act on company data that you can trust will be a competitive differentiation point that organizations will not be able to ignore.

The Rise of Snowflake

This explosion of data has led to the creation of an entirely new generation of cloud data warehousing technologies, all positioned to help organizations have more flexibility and control of their data with a scalable cost model. Among these companies, Snowflake is a trusted leader of thousands of organizations, realizing the value and necessity of data for their business.

While there are numerous ways customers can derive value from Snowflake, this article, 8 Reasons to Build Your Cloud Data Lake on Snowflake, highlights several reasons why organizations turn to Snowflake to enable a more robust data practice in their organizations. The critical takeaway from this article is that when you store data in Snowflake, your experience is drastically simplified because many storage management functionalities are handled automatically. Yet, there are still some challenges and limitations in accessing and activating that data, which we will discuss here.

The biggest challenge and most common question is:
How do non-technical (non-Snowflake) users access and use the data that is relevant to them?

The reality is that this question persisted long before cloud data warehousing was around. Company data was still held directly in databases, and any analysis required a database administrator or engineer to access it for the business. This is where product analytics was born.

The Birth of Self-Service Product Analytics

Product analytics emerged from the frustration of traditional data analysis methods. While querying databases for insights was possible, the process was slow and cumbersome, requiring significant technical expertise. Business intelligence (BI) tools offered some relief but were often rigid and pre-configured for specific reports. This meant limited flexibility for stakeholders who needed to explore data independently and answer unforeseen questions quickly. The rise of product analytics addressed this need for speed and exploration. It provided user-friendly interfaces and intuitive data visualizations specifically designed to analyze user behavior within digital products rapidly. This empowered stakeholders to delve deeper into user data, identify trends and pain points, and ultimately make data-driven decisions to optimize the product and user experience.

Product analytics has always been pivotal to understanding customer behaviors, enhancing product offerings, and driving user engagement. However, the landscape of data analytics has undergone a seismic shift with the advent of Big Data, escalating both the opportunities and challenges it brings.

Traditional product analytics tools, while offering some level of self-service analytics, essentially create data silos. This situation conflicts with the organizational drive and investment toward cloud data warehousing. The core issue with this setup is that data residing outside the warehouse leads to concerns about trust and integrity. Moreover, organizations find themselves duplicating efforts and squandering resources to manage and reconcile data across disparate locations.

Enter Kubit’s Snowflake-native Product Analytics

Kubit is the first Snowflake-native product analytics platform purpose-built to address the limitations and challenges inherent in traditional product analytics approaches. Specifically, providing a self-service analytics platform native to Snowflake allows organizations to access their complete dataset with flexibility, agility, and trust. There are other value drivers as well including but not limited to:

 

  1. Self-Service Analytics
    Self-service analytics refers to the ability for non-technical users to access and analyze data without needing assistance from data engineers and analysts. This is made possible by Kubit’s intuitive and easy to use business interface that allows users to directly query and manipulate their data in real-time, without the need for SQL knowledge or complex ETL jobs.
  2. Flexibility
    Kubit empowers organizations to analyze ALL of their data within Snowflake, going beyond mere clickstream analysis to encompass a wide array of sources including marketing, product, customer success, sales, finance, and operations. By aggregating this diverse data, organizations are equipped to delve into one of the most vital inquiries – why? It’s only through a holistic overview of all data points that teams can begin to unravel this question, paving the way for more informed decision-making.
  3. Data Integrity
    The abundance and completeness of data for analysis becomes irrelevant if there’s a lack of trust in the data itself. Hence, it’s imperative that Kubit can directly access Snowflake, serving as the ‘single source of truth,’ to guarantee the accuracy and reliability of data throughout its lifecycle. This ensures compliance, operational excellence, and builds trust within any data-driven environment.
  4. Total Cost of Ownership
    Gartner’s research indicates that organizations can reduce their Total Cost of Ownership (TCO) by up to 30% through migrating to cloud data warehouses. Kubit further enhances this advantage by assisting organizations in streamlining their analytics technology stack. This enables the reallocation of valuable resources, which are currently underutilized in efforts to create, manage, measure, and validate data and analytics with tools not designed for these tasks. Kubit also cuts down on double paying for storage and compute of data residing in yet another repository for analytics purposes.
  5. The Real-world Impact
    The advantage of adopting a Snowflake-native strategy for self-service analytics lies in the ability of organizations to be operational within days, not weeks or months. This rapid realization of value empowers companies to immediately concentrate on their most crucial and impactful areas. For instance, this TelevisaUnivision case study illustrates how they focused on boosting retention rates for their ViX streaming service, showcasing just one of many successes where Kubit has facilitated the achievement of significant outcomes.
  6. Implementation Insights
    Kubit offers far more than just self-service analytics software; it boasts a world-class team dedicated to ensuring customer success through comprehensive onboarding, enablement, training, and support. Our commitment goes beyond just providing technology; we actively lean in with our customers to help create value and success.

The immediate advantages of leveraging Snowflake-native product analytics are evident, including improved decision-making capabilities and more profound insight into customer behaviors. Moreover, the long-term benefits herald a continuous shift towards predictive and prescriptive analytics, fundamentally transforming the future of business data interaction.

Get Started Today

What are you waiting for? Are you a Snowflake user ready to try Snowflake-native Kubit? Feel free to Take a Tour or Contact Us to discuss your specific goals and how Kubit can help you achieve them. Our team is here to provide personalized support and ensure a smooth onboarding experience.

If you want more information about our offering, including detailed features and implementation guidelines, check out our technical documentation. Whether you’re an experienced data analyst or a Product Manager just starting out, our resources are tailored to meet your needs and help you maximize the potential of your data.

Content Operations from Trustworthy Insights

Warehouse-native Analytics for Content Team

Following the earlier blog “Unveiling the Truth Behind Warehouse-native Product Analytics”, let’s cover how the content team for digital products can effectively operate with integrity with this new approach in analytics. 

What is Content Operations?

In streaming and entertainment applications, content plays a significant role in the engagement, retention and monetization since that’s everything customers interact with. It can also be used as a critical tool to attract new customers, drive conversion and reactivate dormant ones. 

Though content typically is not free. There are licensing and loyalty considerations, also the cost to promote certain content to the right audience. For example, using a free show to acquire new customers or drive them to sign up for a trial subscription; or target a specific cohort of users with episodes from certain genres to bring them back to the platform.  

Even with sophisticated recommendation systems based on modern machine learning algorithms, the content team must conduct lots of experiments and measure their results to maximize the impact. It is a tricky balance since the audience’s taste changes frequently and can be easily influenced by the season or cultural atmosphere. That’s why content management becomes live operations. 

Unfortunately, in most organizations, content analytics is typically overlooked and treated just as a reporting function and left for some pre-built reports to handle. Without self service and exploration, many enterprises couldn’t even connect the dots between content changes and long term customer behavior. 

Problems with Siloed Product Analytics

Some organizations managed to get content insights using last generation product analytics platforms at the expense of very high cost. 

[Lucid Diagram]

Complex Integration with Stale Data

Content data is massive and changes very frequently. Imagine a content database with every show and episode, with dynamic assignments to different channels, genres, carousels and promotions, along with confidential loyalty data. None of the information is available inside the digital application when a customer starts watching a video. 

In order for these product analytics platforms to provide content insights, complex integration has to be completed to duplicate the content data into their data silos. Either the content data must be available inside the application on the devices, or special ETL jobs have to be built to sync it over periodically. Neither approach is ideal because of the dynamic nature of the content data itself: any kind of copying or syncing causes problems of stale data, or even worse, potential of wrong data. 

There are also other vendors for each stage of a customer’s journey, like identity resolution, customer engagement and experimentation. The product analytics must have a copy of precious customer data from each and every vendor in order to deliver the insights. That is the root cause of all the headaches and issues. 

There are criss-cross connections to be established through various approaches (e.g. ETL, API and storage sharing) and conduct heavy duty data copying. More often to anyone’s like, these connections can be broken, require maintenance, or even worse need to restate the historical data because of mistakes made. Just imagine the impact on the critical campaigns which require almost real-time insights. 

Identity Resolution Becomes a Nightmare

Streaming and entertainment apps are all very sensitive about data security and privacy. As required by GDPR like policies, most customer identifiers are obfuscated or anonymous and require identity resolution vendors (e.g. Amperity, LiveRamp) to stitch them together. 

Unfortunately identity resolution is not deterministic and often there are desires to play/test with different strategies in order to measure certain content campaigns more accurately or efficiently. If the resolved ids have already been copied into product analytics platform’s data silos, there is no chance to restate or re-evaluate. Frankly, it is even hard to imagine how these insights can be trusted because technically as a third party, a product analytics platform shouldn’t store customers’ PII information in the first place. 

No Single Source of Truth

This one is really simple: with copies of data lying outside of the enterprises, how can anyone trust the insights where the analytics platform is a blackbox and there is zero transparency to understand how the insights are generated. Needless to say, there is no reconcilability whatsoever. It would really take some vote for confidence to rely on these findings to make content decisions, which often involves millions of dollars of budget.  

Limited View on Customer Impact

Because some content data (like loyalty) is too sensitive to be sent to the digital app or the third party analytics vendor, some changes very fast and require constant restating or backfilling (like cataloging information), there can never be a complete 360 view of customer journey with siloed product analytics. 

In addition, most media apps generate significant amounts of behavior data, like heartbeat events for video watching, which would lead to skyrocketing cost on such platforms which typically charge by data volume because they ingest customer data. Many content teams were forced to sample their data and live with partial insights which could lead to completely wrong results.

The Warehouse-native Way

All of these problems can be solved with the warehouse-native approach when the enterprise is committed to have full control of their data within a cloud data warehouse. By bringing all of the clickstream, identity resolution, impression, conversion and A/B test data from the vendors together and making their own data warehouse the Single Source of Truth, new generation of warehouse-native analytics platforms can connect directly to customer’s complete data model through effortless integration and ensuring both the integrity and self service perspectives required by content operations. 

[Lucid Diagram]

Effortless Data Integration

For the enterprise, they just need to collect their own customer data (including clickstream/behavior, content and operational data) and all vendors’ data into a central data warehouse which is under their full control. Often, access to vendors’ data can be achieved through Data Sharing protocols (available in most cloud data warehouses) instead of duplication with ETL or API. 

There is no complex graph of data flow outside of the enterprise, especially between vendors. When there are data issues, only one place needs to be fixed and it is easily verifiable instead of coordinating with several third parties to pray that they will do the right thing since there is no visibility into their black boxes. There is no data backfilling, scrubbing or restating required.

Flexible Identify Resolution

Because all the data now goes to the enterprises where the customers are from, all available customer identifiers can be explicitly stated and used for analytics internally without the need for hashing and complicated matching (often guessing) algorithms.  

Even better, the content team can experiment different identity resolution or attribution strategies on the fly, without the need to engage with vendors or reprocess any data. The ability of asking and validating “what if” questions before commitment gives complete confidence and flexibility. 

Moreover, sensitive identity data can also be hidden or dynamically masked for warehouse-native analytics platform’s access since they don’t need to see the individual data as long as the underlying join works. 

Exploration with Integrity

With One Single Source of Truth, and the ability to provide the SQLs behind every insight, the content team can now measure their content impact, explore customer insights in a self service manner while maintaining the highest level of integrity. There are never concerns about data volume or bringing in new data for analysis. 

The transparency delivered by warehouse-native analytics makes it complimentary to any other BI, AI or machine learning tools, where they can not only reconcile the insights but also build on top of them. For example, a complex subscription retention analysis for different content cohorts can now be embedded into the machine learning algorithm for content recommendation as the KPI for the tuning purposes because the SQL is fully accessible.  

Full Customer 360 View

With all the data about customers’ complete lifecycle stored in one place. warehouse-native analytics can easily analyze the impact from content campaigns with subscriptions, lifetime value, retention and reengagement data. Best yet, because all insights are generated dynamically, there are no ETL jobs to develop, no data to backfill when new data is required. That means that growth marketers don’t have to wait weeks or months for some data model changes required for specific vendors. Live customer insights with thorough depth is not a dream any more.  

Summary

The days of data silos are long gone. With the convenience and advantages, warehouse-native analytics for content operations is an undeniable trend for enterprises with media and entertainment focused digital products. Getting reliable, trustworthy insights from a Single Source of Truth should be on the top of the mind for every serious content team. 

Explore Customer 360 with Integrity

Warehouse-native Analytics for Growth Marketing

Following the earlier blog “Unveiling the Truth Behind Warehouse-native Product Analytics”, let’s cover how the growth marketing team for digital products can effectively explore customer 360 with integrity with this new approach in analytics. 

What is Growth Marketing?

There are many definitions out there. We’d like to think of Growth Marketing as an approach to attract, engage and retain customers through campaigns and experiments focusing on the everchanging motives and preferences of their customers. In practice, growth marketers build, deliver and optimize highly tailored and individualized messaging aligned with their customers needs through multiple channels. They are a cross functional team between Product, Marketing, Customer and Data. Product analytics play a significant role for this job with the focus on self service customer insights. 

From customers’ lifecycle perspective, there can be several stages:

Acquisition

At the top of the funnel, customer acquisition is all about the strategy to target potential customers with tailored content through multiple channels with highest efficiency and fastest but most accurate measurements. The campaigns can be executed as ads, paid search, call-to-actions, free offers or discount coupons on various third-party channels. Often, there is a significant amount of budget allocated with these campaigns, which are also super dynamic. 

Often the term “attribution” is used, which means to attribute every customer to the proper channel they come from in order to measure and find the most effective one. It requires constant monitoring, A/B testing and tuning to optimize acquisition channels on the fly in order to adapt to the market dynamics and get the best ROI. 

Engagement

Once a new customer comes in, the focus now is to drive their engagement and collect more data to help build better experiences by enhancing their customer journey. Typically there are critical stages or funnels for a digital product like onboarding (tutorial), sign up, engaging with the core loop (e.g. watch a video, invite a friend, add to cart), and checkout. The goal of the engagement is to prompt customers with the most relevant and attractive content and push them through the desired sequence in order to keep them in the application. 

Besides optimizing the user flow by improving design and usability, growth marketers typically rely on incentivized offers (first order discount, free trial), social/viral loop (invite a friend, refer someone) and loyalty programs to keep their customers engaging. All of these efforts require a deep understanding of customers’ journey (e.g. funnel, conversion, drop off) through product analytics in order to make the right decisions. 

Reactivation

There will always be customers who become dormant or churn completely. In order to get them back into the application and retain, growth marketers utilize every possible communication channel at their disposal: email, push, SMS or even targeted ads to get their attention and get them back. Often some third party tools like Braze, a Customer Engagement Platform, will be utilized to deliver these messages. Though, product analytics will be the driver for these campaigns to identify different cohorts, target them and measure the ultimate results, which is not only about impression and open rate, but also the long term impact inside the application: e.g. retention, subscription attach, LTV (lifetime value).

Problems with Siloed Product Analytics

Those last generation product analytics platforms worked out for growth marketing needs at the time when they needed to run fast, but with some high cost. 

Super Complex Data Flows

Since there are always different vendors for each stage of a customer’s journey, the product analytics must have a copy of precious customer data from each and every vendor in order to deliver the insights. That is the root cause of all the headaches and issues. 

There are criss-cross connections to be established through various approaches (e.g. ETL, API and storage sharing) and conduct heavy duty data copying. More often to anyone’s like, these connections can be broken, require maintenance, or even worse need to restate the historical data because of mistakes made. Just imagine the impact on the critical campaigns which require almost real-time insights. 

Identity Matching Becomes a Nightmare

When privacy concerns like GDPR arise, there are more and more limitations on what kind of customer identifiers can be shared with and between vendors themselves. Often the growth marketers get stuck in the middle of the battle between data engineering and security personnels. Eventually some aerobatic maneuvers have to be done on the data pipeline, which makes everything further more complicated and fragile. 

No Single Source of Truth

This one is really simple: with copies of data lying outside of the enterprises, how can anyone trust the insights where the analytics platform is a blackbox and there is zero transparency to understand how the insights are generated. Needless to say, there is no reconcilability whatsoever. It would really take some vote for confidence to rely on these findings to make growth marketing decisions, which often involves millions of dollars of budget.  

Limited View on Customer 360

For growth marketers, often just having the impression, conversion, CPI/CPM data is not enough at all. The deeper the insights into customer behavior, the better. For example, just measuring the open rate of a push campaign only scratched the surface, it is often desirable to understand what kind of content did the customer engage with, how long did they stay in the application, did they come back the week after, or if they converted to subscriber and if/when did they churn again. 

In order to get this complete view of customer 360, operational data are required (e.g. Items and Subscriptions), but often it is almost impossible for traditional product analytics platforms to get these data because they are usually not part of the clickstream (behavior) data and will require very complicated ETL integration to send a copy out. 

The Warehouse-native Way

All of these problems can be solved with the warehouse-native approach when the enterprise is committed to have full control of their data within a cloud data warehouse. By bringing all of the clickstream, campaign, impression, conversion data from the vendors together and making their own data warehouse the Single Source of Truth, new generation of warehouse-native analytics platforms can connect directly to the custom data model with effortless integration and ensuring both the integrity and self service perspectives required by growth marketers. 

Simplest Data Integration

For the enterprise, they just need to collect their own customer data (including clickstream/behavior and operational data) and all vendors’ data into a central data warehouse which is under their full control. Often, access to vendors’ data can be achieved through Data Sharing protocols (available in most cloud data warehouses) instead of duplication with ETL or API. 

There is no complex graph of data flow outside of the enterprise, especially between vendors. When there are data issues, only one place needs to be fixed and it is easily verifiable instead of coordinating with several third parties to pray that they will do the right thing since there is no visibility into their black boxes. There is no data backfilling, scrubbing or restating required.

Customizable Identify Resolution

Because all the data now goes to the enterprises where the customers are from, all available customer identifiers can be explicitly stated and used for analytics internally without the need for hashing and complicated matching (often guessing) algorithms.  

Even better, enterprises can experiment different identity resolution or attribution strategies on the fly, without the need to engage with vendors or reprocess any data. The ability of asking and validating “what if” questions before commitment gives complete confidence and flexibility. 

Moreover, sensitive identity data can also be hidden or dynamically masked for warehouse-native analytics platform’s access since they don’t need to see the individual data as long as the underlying join works. 

Exploration with Integrity

With One Single Source of Truth, and the ability to provide the SQLs behind every insight, growth marketers can now explore customer insights in a self service manner while maintaining the highest level of integrity. The transparency delivered by warehouse-native analytics makes it complimentary to any other BI, AI or machine learning tools, where they can not only reconcile the insights but also build on top of them.

Full Customer 360 View

With all the data about customers’ complete lifecycle stored in one place. warehouse-native analytics can easily bring in any operational data (e.g. Items, Subscriptions or LTV) into the analyses. Best yet, because all insights are generated dynamically, there are no ETL jobs to develop, no data to backfill when new data is required. That means that growth marketers don’t have to wait weeks or months for some data model changes required for specific vendors. Live customer insights with thorough depth is not a dream any more.  

Summary

The days of data silos are long gone. With the convenience and advantages, warehouse-native analytics for growth marketing is an undeniable trend for enterprises with customer focused digital products. Besides exploring customer 360, getting reliable, trustworthy insights from a Single Source of Truth should be on the top of the mind for every serious growth marketer.  

Mastering Conversion Analysis: A Deep Dive into Kubit’s Funnel Reports

In the fast-paced world of digital marketing and product analytics, understanding the intricacies of user behavior is not just advantageous—it’s essential. One of the most powerful tools at your disposal for dissecting user journeys is the funnel report. Effective use of funnel reports can illuminate the path to increased conversions, reveal bottlenecks in your user experience, and guide strategic decisions that drive business growth.

Here are the 5 unique capabilities of Kubit’s funnel report tool that have made it an indispensable asset for data-driven professionals aiming to unlock actionable insights from their user data.

Understanding Funnel Reports in Kubit

At its core, a funnel report is a visual representation of how users progress through a predetermined series of steps or actions on your website or app. This progression could relate to anything from completing a purchase to signing up for a newsletter.

Kubit’s Funnel Report offers these 5 capabilities to get the most out of your data:

  1. Multi-step Funnel Creation: Craft funnels that reflect the complexity of real user journeys.
  2. Partitioning Options: Slice your data by day, session, or custom conversion windows for nuanced analysis.
  3. Deeper Conversion Insights: Break down funnel stages by various fields to uncover underlying patterns.
  4. Advanced Visualization: Choose between step-by-step breakdowns or time-based line charts for dynamic report viewing.
  5. Cohort Analysis: Right click and build users into cohorts for targeted behavioral analysis over time.

Use Cases for Funnel Reports

The applications of funnel reports in Kubit are diverse, mirroring the myriad pathways users can take towards conversion. Here are just a few scenarios where Kubit’s funnel reports can be most valuable:

  • Enhancing User Onboarding: Track new users’ progress through your onboarding sequence to identify and rectify any stumbling blocks.
  • Optimizing Product Engagement: Discover where users disengage or drop off when interacting with specific features or content.
  • Streamlining Conversion Paths: Measure the time it takes for users to move from one stage of your funnel to the next, and deploy strategies to accelerate this progression.
  • Analyzing Behavior Pre-Conversion: Understand the actions repeat users take before finally converting, providing insights into which features or content are most influential in driving conversions.

Through these use cases and beyond, Kubit’s funnel reports offer actionable insights that can powerfully impact business strategies and outcomes.

Real-World Success with Kubit Funnel Reports

Consider Influence Mobile, a customer that leveraged Kubit’s funnel reports to uncover a costly problem. By carefully analyzing their onboarding process and identifying friction points with Kubit’s tools, they significantly improved user retention. Furthermore, Kubit’s capabilities enabled them to detect patterns indicative of fraudulent activity, ensuring a secure and trustworthy platform for their users. Their success story underlines the potential of Kubit’s funnel reports to transform challenges into triumphs.

Getting Started with Funnel Reports in Kubit

Kubit simplifies the process of building and deploying funnel reports. To get started:

  1. Define Your Conversion Goals: Determine what user actions or sequences you want to analyze.
  2. Set Up Your Funnel Steps: Using Kubit, create a funnel that reflects these steps in your user’s journey.
  3. Analyze and Iterate: Once your data starts flowing, use Kubit’s insights to refine your strategy and improve user outcomes.

Understanding how to interpret the data from your funnel reports is crucial. Look not just at where users are dropping off, but also why. This often involves cross-referencing funnel data with user feedback, usability tests, or other analytics reports.

Conclusion

Kubit’s funnel reports are a potent tool for anyone looking to enhance their understanding of user behavior and drive meaningful improvements in their conversion rates. Whether you’re just starting on your analytics journey or are looking to refine your approach with cutting-edge tools, Kubit offers a robust platform designed to elevate your analytics capabilities.

“The more people are looking at this data, the better. Everyone should be monitoring our most important conversions,” states a seasoned user of Kubit, underscoring the collective benefit of widespread engagement with analytics within an organization.

Ready to transform your data into actionable insights? Sign up for Kubit or reach out for a demo today, and discover how funnel reports can redefine the way you view your users’ journeys from first touch to conversion.

Unraveling The Truth About Warehouse-native Product Analytics

In recent years, warehouse-native has become a popular topic in the product analytics market. Along with the maturity of the modern data stack, it is not a coincidence that more and more companies have realized the need for customer insights coming directly from their warehouse. However, there needs to be more clarity from vendors making false claims to ride on this wave. In this blog, I will review the history of product analytics, explain the rationale behind the warehouse-native approach, and unveil the benefits of this new generation optimization tool for digital products.

Integrity vs Speed: The History of ‘Siloed’ Product Analytics

Historically, analytics has been conducted directly in a data warehouse. Consider traditional Business Intelligence (BI) tools like Tableau, Looker, and PowerBI; typically, data analysts create reports and charts in these tools to visualize the insights that ultimately stem from executing SQLs in their own data warehouse. The data control is entirely in the hands of the enterprises, though this approach requires dedicated and influential engineering and analytics teams.

With the exponential growth of digital products, from web to mobile applications, a different way of conducting analytics has emerged, starting with Omniture (later becoming Adobe Analytics) and Google Analytics. Due to the dynamics in the ecosystem, few enterprises’ data teams can keep up with the constant requirement changes and new data from different vendors. It became well-accepted to sacrifice integrity for speed by embedding SDKs and sending the data to third-party silos, and relying on a black box to get insights.

For a while, everyone was happy to rely on impression, conversion CPI/CPM, etc., and metrics from external analytics platforms to guide their marketing campaigns and product development. With the mobile era, the need for Continuous Product Design arose, along with a new breed of Growth Marketing people who rely on product insights to drive user acquisition, customer engagement, and content strategy. That’s when Mixpanel and Amplitude came into existence to provide self-service customer insights from their proprietary platforms, aiming to run fast and bypass data engineering and analytics teams.

Governance, Security, and Privacy: Rethink the Black Box   

Fairly soon, the industry started to correct itself. Sharing customers’ private data, like device identifiers, is no longer acceptable with other vendors. Many enterprises now realize that it is impossible to have complete data governance, security, and privacy control if their sensitive data has been duplicated and stored in third parties’ data silos. How can they trust the insights from a black box that can never reconcile with their data? Without a Single Source of Truth, there is no point in running fast when your insights don’t have the integrity to justify the decisions.

Let’s face it: why should anyone give up their data to third parties in the first place? With the new modern data stack, especially the development of cloud data warehouses like Snowflake, BigQuery, and Databricks, the days of having to rely on external analytics silos are long gone. More and more enterprises have taken data control as their top priority. It was time to rethink product analytics: is it possible to explore customer insights with integrity and speed at the same time?

Without a Single Source of Truth, there is no point in running fast when your insights don’t have the integrity to justify the decisions.

The Rise of Warehouse-native

Cloud warehouses have become many organization’s source of truth, leveraging millions of dollars in infrastructure investments. Scaling access to this information used to be as simple as dumping all the data into a warehouse and reverting to the BI tools. Unfortunately, reporting tools like Tableau, Looker, or PowerBI were designed exclusively for professionals answering static questions. To get insights, most product, marketing, and business people rely on analysts to build reports to answer their questions. Going through another team is tedious, slow, and even worse, highly susceptible to miscommunications. The nature of optimizing digital products necessitates ad-hoc exploration and spontaneous investigation. If each question takes hours or days to be answered, the opportunity window may have closed long before the decision is made.

This self-service demand and warehouse-native motion triggered a new generation of tools that provide SaaS product analytics directly from customers’ cloud data warehouse. It perfectly balances integrity and speed, which should be the objective of  analytics platforms.

If each question takes hours or days to be answered, the opportunity window may have closed long before the decision is made.

What is the Warehouse-native Way?

Here are four characteristics to identify a true warehouse-native solution:

Tailored to your data model

A warehouse-native solution should continually adapt to the customer’s data model instead of forcing them to develop ETL jobs to transform their data. Besides sharing data access, there should be zero engineering work required on the customer end, and all the integration should be entirely done by the vendor.

The effortless integration is one of the most significant differences from the traditional data silo approach, which mandates the customer to build and maintain heavy-duty ETL batch jobs, which could take months to develop and yet still can break frequently. One example is how Amplitude claims to be warehouse native, but in reality, it just means their application is “Snowflake Native” (running as containers) but still requires customers to transform their data into Amplitude’s schema. 

Data should never leave your control

This should be assumed under the term ‘warehouse-native’. However, some solutions are engaging in warehouse syncing or mirroring to copy customers’ data into their data silos. Some admin UI may be provided to configure the data connection and eliminate the need for custom ETL jobs, but if you see words like “load,” “transform,” or “sync,” the system is essentially making copies of customers’ data into its silos.

Besides losing control, the biggest problem with data duplication is how they adapt to customer data changes. There will be a constant struggle for backfilling, scrubbing, restating, and reprocessing when there are data quality issues, or data model changes (e.g., a new attribute or a dimension table), which are fairly common and happen regularly.

Besides reducing some engineering work, achieving a Single Source of Truth or data integrity with a data syncing method is impossible. It’s difficult to trust a black box without visibility into how insights are generated.

Complete transparency with SQL

One of the most prominent traits of a proper warehouse-native solution is to provide customers with the SQL behind every report. Since the data lives in the customer’s warehouse anyway, there should be complete transparency on how the insights are computed. Such a level of transparency can guarantee accuracy and provide reconcilability and allows customers to extend the work from product analytics platform to more advanced internal development, like machine learning and predictive modeling.

Dynamic configuration with exploratory insights

Because all reports come directly from the data in a customer’s warehouse leveraging SQL, every insight should be dynamically generated. There are several significant benefits:

  • Underline data changes will immediately be reflected in analytics. There is no data to scrub, no cache to poke, and no vendor to wait for.
  • Raw data can be analyzed on the fly in an exploratory manner. Warehouse-native analytics supports virtual events, virtual properties, dynamic functions, and analyzing unstructured data (e.g., JSON or struct), which helps in hypothesis testing before committing to lengthy data engineering work.
  • Data model improvements can be iterative and incremental. When new attributes or dimensions are added, they automatically apply to historical data. There is no data backfill required because everything happens with dynamic joins. With the multi-schema support, it is possible to have both raw and clean data schemas running in parallel to satisfy the speed and consistency requirements simultaneously.

Incorporate operational data without the need for ETL. All of the clickstream/behavior events, vendor data and operational tables can be dynamically combined for analytics, all inside the customer’s data warehouse with no data movements required.

Summary

With its unique advantages and momentum in the market, enterprises will inevitably choose warehouse-native analytics to optimize their digital products and explore customer insights with integrity. In the meantime, it is vital to look through the marketing claims and find truthful solutions. In upcoming blogs, I will cover the real-world use cases for applying true warehouse-native product analytics solutions to different teams and industries.

Key product analytics metrics

What are product analytics metrics and why are they important

In the digital age, data is the lifeblood of any business. It can transform a company’s trajectory, inform strategic decisions, and predict customer behavior. But data alone isn’t enough. It’s the application of relevant metrics that can truly drive business growth. When created and measured appropriately, metrics can help illuminate the path to better customer experiences, optimized products, and business success. However, not all metrics are created equal. The key lies in selecting ones that are meaningful, actionable, and tied to your specific business objectives.

In this blog post, we dive into the importance of metrics in product analytics, how to set the right ones, and when to measure and evolve them.

Understanding Quality Metrics

Quality metrics provide actionable insights that are specific to your business. They’re quantifiable, easy to understand, and directly linked to your key performance indicators (KPIs).

For instance, an essential metric is Viewing Time in seconds if you’re a streaming media business like ViX. That heartbeat metric is directly tied to the business goals of driving more watch time and directly impacts revenue. Please check out this case study for a more detailed overview of how ViX teams use Kubit to support and enhance their daily work.

Setting Quality Metrics

Identifying the right metrics is vital for your product’s success. Here are some common categories of metrics to consider:

Acquisition

Acquisition metrics are crucial in understanding how effectively you’re attracting new users. By capturing and utilizing these metrics, you gain valuable insights that fuel informed decisions about your product’s growth strategy.

Acquisition metrics track the process of bringing new users into your ecosystem. This includes aspects like website visits, app downloads, sign-ups, and user acquisition cost (UAC) across different marketing channels. Analyzing these metrics helps you identify which channels are most successful in attracting your target audience. Imagine you see a surge in sign-ups from social media ads compared to email marketing. This tells you to invest more resources in social media campaigns.

Furthermore, acquisition metrics help you optimize your marketing spend. You can identify areas where you get the most bang for your buck by tracking UAC per channel. This allows you to allocate your budget more efficiently towards channels that deliver high-quality users.

Overall, capturing and utilizing acquisition metrics is essential for any product team aiming to grow its user base. They provide a data-driven perspective on your marketing efforts, ultimately leading to a more targeted and successful product strategy.

Activation

Once you’ve acquired a new user, you must focus on how best to activate them and turn them into engaged users. Capturing and utilizing activation data is critical for optimizing your product and maximizing its long-term value.

Activation metrics focus on that critical “aha!” moment when users discover the core value proposition of your product. This might involve completing a specific action, like purchasing in an e-commerce app or creating a first post on a social media platform. Tracking activation rates (percentage of users who reach this point) and time to activation reveals valuable insights.

For example, a low activation rate could indicate a confusing onboarding process or a lack of a clear value proposition. By analyzing user behavior leading up to activation, you can identify friction points and streamline the user journey. Additionally, a long time to activate might suggest the need for in-app tutorials or targeted prompts to nudge users toward the core functionality.

Ultimately, utilizing activation metrics allows you to personalize the user experience and remove roadblocks that hinder engagement. By focusing on activation, you ensure those who acquire your product become invested users, driving long-term success.

Engagement

Engagement metrics are the lifeblood of understanding how users interact with your product. This data is paramount for fostering a sticky and successful product and goes beyond simply acquiring users; they delve into how deeply users interact and derive value from your product.

Examples include daily/monthly active users, session duration, feature usage frequency, and content consumption. By analyzing trends in these metrics, you can identify areas that spark user interest and those that lead to drop-off.

For instance, a consistent decline in daily active users might indicate waning interest. If you investigate further, you might discover a new competitor offering a similar feature or a recent update that introduced bugs or a confusing interface. Conversely, a surge in a specific feature’s usage could signal a hit with users. This valuable insight allows you to double down on success and prioritize improvements in areas causing disengagement.

Ultimately, utilizing engagement metrics empowers you to refine your product roadmap. You can prioritize features that drive deep user engagement, fostering a loyal user base that consistently returns. This translates to increased product adoption and opens doors for monetization and long-term product viability. By focusing on engagement, you ensure your product isn’t just acquired but actively used and loved by your target audience.

Conversion

In the realm of product analytics, conversion metrics are the champions of measuring success. Capturing and utilizing this data allows you to understand how effectively you’re guiding users towards achieving your desired goals within the product. These goals can vary depending on your product type – a purchase on an e-commerce platform, completing a level in a game, or subscribing to a premium service.

Conversion metrics track the user journey towards specific actions. Common examples include click-through rates on calls to action (CTAs), add-to-cart rates, sign-up completion rates, and conversion funnel analysis. By analyzing these metrics, you gain valuable insights into how well your product is facilitating the desired user behavior.

Imagine a low conversion rate for your premium service sign-up. This could indicate a confusing pricing structure, an unclear value proposition, or a poorly designed sign-up process. Utilizing conversion metrics lets you identify these bottlenecks and optimize the user journey. A/B testing different CTAs or simplifying the sign-up flow can significantly improve conversion rates.

Ultimately, capturing and utilizing conversion metrics empowers you to maximize the value users derive from your product. By optimizing conversion funnels, you ensure users complete desired actions, leading to increased revenue, higher user satisfaction with achieving their goals, and, ultimately, a successful business.

Impact

In the fast-paced world of product development, every decision counts. Capturing and utilizing feature impact metrics is a critical tool in helping you understand how individual features influence user behavior and overall product success.

These metrics go beyond simple feature usage. They delve deeper, measuring the impact a specific feature has on key performance indicators (KPIs) like engagement, conversion rates, or even user satisfaction. This allows you to identify features that are driving positive outcomes and those that might be hindering progress.

For example, imagine you introduce a new social sharing feature in your productivity app. While user adoption might be high (many users try it out), the feature impact metric could reveal a negligible improvement in overall user engagement. This valuable insight suggests the feature might not be addressing a core user need.

By capturing and utilizing feature impact metrics, you gain a clear picture of how each aspect of your product contributes to the bigger picture. This data empowers you to make data-driven decisions, prioritize features that deliver real value, and ultimately build a product that resonates deeply with your users.

Retention

After going through the hard work of acquiring and activating new users, retention is the key to measuring long-term success. Capturing and utilizing retention data is paramount for building a product with lasting value and a loyal user base.

Common retention metrics include daily/monthly active users (DAU/MAU), and user lifetime value (LTV). By analyzing trends in these metrics, you gain valuable insights into user satisfaction and the “stickiness” of your product.

Imagine a steady decline in DAU or a high churn rate. This could indicate features that lose their appeal over time, a confusing user interface, or a lack of ongoing value proposition. Utilizing retention metrics allows you to identify these pain points and take action. This might involve introducing new features that drive continued engagement, simplifying the user experience, or implementing onboarding programs that foster deeper user understanding.

Ultimately, capturing and utilizing retention metrics empowers you to build a product that users love. By optimizing for user retention, you foster a loyal user base that consistently returns, leading to increased revenue, and improved brand reputation.. Retention metrics are the compass that guides you toward building a product with lasting appeal and a sustainable future.

Churn

Having an early warning system in the form of churn metrics is critical in mitigating potential issues. By effectively capturing and utilizing churn data, you gain invaluable insights into why users abandon your product, allowing you to identify and address issues before they become widespread.

Churn metrics track the rate at which users stop using your product over a specific period. This seemingly simple metric reveals a wealth of information. Analyzing churn rates across different user segments, timeframes, and acquisition channels allows you to pinpoint areas where users are most likely to churn.

Imagine a high churn rate amongst users who signed up through a specific marketing campaign. This could indicate misleading advertising that didn’t accurately represent the product’s value proposition. Conversely, a surge in churn shortly after a major update might point to usability issues or a confusing new interface.

By capturing and utilizing churn metrics, you gain a proactive approach to user retention. This data empowers you to identify and address issues that lead users to churn, ultimately fostering a loyal user base and building a product with lasting appeal.

Choosing the right metrics depends on your business type, product, and specific goals. There’s no one-size-fits-all approach, but keeping these categories in mind will guide you toward meaningful metrics that reflect your product’s performance and user behavior.

Measuring and Evolving Metrics

Once you’ve identified the right metrics, the next step is to measure them regularly to understand the baselines and make informed decisions. The frequency of measurement depends on the specific metric and your business needs.

For instance, DAUs (Daily Active Users) might be measured daily, while churn rate or retention might be measured monthly or quarterly. Reviewing and updating your metrics periodically ensures they remain relevant as your product and market evolve.

Also, remember that metrics should be seen as tools for learning and improvement, not just reporting. If a metric is consistently underperforming, use it as an opportunity to investigate, learn, and iterate on your product.

Metrics with Kubit

Kubit stands out in the crowded data analytics space due to its unique ability to seamlessly handle a comprehensive spectrum of data types, including but not limited to online, offline, transactional, operational, and behavioral data. Our warehouse-native approach ensures that organizations have the ability to access, analyze, and assimilate ALL of their data with Zero-ETL. This sets a new standard for creating, measuring, and adjusting metrics, offering unparalleled flexibility and precision. Unlike other solutions that mandate predefined data models in their data silos or limit the scope you can view, Kubit’s platform empowers you to explore every facet of your data and gain deep, actionable insights. This differentiation unlocks improved data-driven decision-making and gives you a competitive edge in today’s data-centric business environment.

Conclusion

Meaningful metrics are the guiding compass in navigating the expansive realm of product analytics. They provide a clear direction, enable informed decisions, and drive business success. By understanding what good metrics look like, how to set them, and when to evolve them, product managers and data analysts can increase their positive impact on business outcomes.

Remember, numbers tell a story. Ensure your metrics tell a story that matters to your business. Happy analyzing!